SYRIAN PRIVATE UNIVERSITY

Electric Circuits I

 Dr. Eng. Hassan M. AfmadHassan.Ahmad@spu.edu.sy, istamo48@mail.ru

Chapter 2 Basic Laws

2.1 Ohm's Law.
2.2 Nodes, Branches, and Loops.
2.3 Kirchhoff's Laws.
2.4 Series Resistors and Voltage Division.
2.5 Parallel Resistors and Current Division.
2.6 Wye-Delta Transformations.

2.1 Ohms Law

- Ohm's law states that the voltage across a resistof is directly proportional to the current \boldsymbol{i} flowing through the resistor R.
- Mathematical expression for Ohm's Law is as follows.

$$
v=i R
$$

- The resistance R of an element denotes its ability to resist the flow of electric current; it is measured in ohms (Ω).
- Two extreme possible values of R: 0 (zero) and ∞ (infinite) are related with two basic circuit concepts:
a) short circuit;
b) open circuit.

(a)

(b)

Types of resistors

- Fixed resistor: its resistance remains constant.
* There are two common types of fixed resistors:
- Wirewound, Fig. (a);
- Composition, Fig. (b), used when large resistance is needed.
- Variable resistor: its resistance is variable.
- Wirewound, Fig. (c);
- Composition, Fig. (d).

(c)

(a)

(b)
- Conductance is the ability of an element to conduct electrie current; it is the reciprocal of resistance R and is measured in siemens (S):

$$
G=\frac{1}{R}=\frac{i}{v}
$$

- Power dissipated by a resistor: $\quad p=v i=i^{2} R=\frac{v^{2}}{R}=v^{2} G=\frac{i^{2}}{G}$

Example 2.1.
An electric iron draws 2 A at 120 V . Find its resistance.
Solution:

$$
R=\frac{\hat{v}}{i}=\frac{120}{2}=60 \Omega
$$

Example 2.2

In the circuit shown in Fig., calculate i, G, and p.
Solution:

$$
i=\frac{v}{R}=\frac{30}{5 \times 10^{3}}=6 \mathrm{~mA} ; \quad G=\frac{1}{R}=\frac{1}{5 \times 10^{3}}=0.2 \mathrm{mS}
$$

We can calculate the power in various ways:

$$
\begin{aligned}
& p=v i=30\left(6 \times 10^{-3}\right)=180 \mathrm{~mW} ; \text { or } p=i^{2} R=\left(6 \times 10^{-3}\right) 5 \times 10^{3}=180 \mathrm{~mW} \\
& p=v^{2} G=(30)^{2} 0.2 \times 10^{-3}=180 \mathrm{~mW}
\end{aligned}
$$

Example 2.3

A voltage source of $20 \sin \pi \mathrm{t} \mathrm{V}$ is connected across a $5-\mathrm{k} \Omega$ resistor. Find the current through the resistor and the power dissipated.

Solution:

$$
\begin{aligned}
& i=\frac{v}{R}=\frac{20 \sin \pi t}{5 \times 10^{-3}}=4 \sin \pi t \mathrm{~mA} \\
& p=v i=80 \sin ^{2} \pi t \mathrm{~mW}
\end{aligned}
$$

2.2 Nodes, Branches and Loops

- A branch represents a single element such as a voltage source or a resistor.
- A node is the point of connection between two or more branches.
- A loop is any closed path in a circuit.
- A network with b branches, n nodes, and l independent loops will satisfy the fundamental theorem of network topology:

$$
b=l+n-1
$$

- Two or more elements are in series if they exclusively share a single node and consequently carry the same current.
- Two or more elements are in parallel if they are connected to the same two nodes and consequently have the same voltage across them.

Example 2.3.

Determine the number of branches and nodes in the circuit shown in Fig. Identify which elements are in series and which are in parallel.

Solution:

- Since there are four elements in the circuit, the circuit has four branches: $10 \mathrm{~V}, 5 \Omega$, 6Ω and 2 A .
- The circuit has three nodes as identified in Fig.
- The $5-\Omega$ resistor is in series with the $10-\mathrm{V}$ voltage source because the same current would flow in both.
- The $6-\Omega$ resistor is in parallel with the $2-\hat{A}$ current source because both are connected to the same nodes 2 and 3 .

Example 2.4

How many branches and nodes does the circuit in Fig. have? Identify the elements that are in series and in parallel.

Solution:

Five branches and three nodes are identified in Fig.
The $1-\Omega$ and $2-\Omega$ resistors are in parattel.
The $4-\Omega$ resistor and $10-\mathrm{V}$ source are also in parallel.

2.3 Kirchhoff's Laws

- Kirchhoff's current law (KCL) states that the algebraic sum of currents entering a node (or a closed boundary) is zero.
- Mathematically,

$$
\sum_{n=1}^{N} i_{n}=0 \Rightarrow i_{1}+\left(-i_{2}\right)+i_{3}+i_{4}+\left(-i_{5}\right)=0
$$

- In other words, KCL states that the sum of the currents entering a node is equal to the sum of the currents leaving the node.

$$
i_{1}+i_{3}+i_{4}=i_{2}+i_{5}
$$

Application of KCL

- A simple application of KCL is combining current sources in parallel.
- The combined current is the algebraic sum of the current supplied by the individual sources.
- For example, the current sources shown in Fig (a) can be combined as in Fig. (b).
- Applying KCL to node a :

$$
I_{T}+I_{2}=I_{1}+I_{3} \Rightarrow I_{T}=I_{1}-I_{2}+I_{3}
$$

- A circuit cannot contain two different currents, and, in series, unless $L_{1}=I_{2}$; otherwise KCL will be violated.

(b)
- Kirchhoff's voltage law (KVL) states that the algebraic sum of all voltages around a closed path (or loop) is zero.
- Mathematically,

$$
\sum_{m=1}^{M} v_{n}=0
$$

- Consider the circuit in Fig.

- Suppose we start with the voltage source and go clockwise around the loop as shown; then voltages would be $-v_{1},+v_{2},+v_{3},-v_{4}$, and $+v_{5}$ in that order.
- Thus, KVL yields $-v_{1}+v_{2}+v_{3}-v_{4}+v_{5}=0 \Leftrightarrow v_{2}+v_{3}+v_{5}=v_{1}+v_{4}$

Application of KVL

- When voltage sources are connected in series, KVL can be applied to obtain the total voltage.
- Consider the voltage sources shown in Fig.(a).
- Applying KVL gives the combined or equivalent voltage source in Fig.(b).

$$
-V_{a b}+V_{1}+V_{2}-V_{3}=0 \Rightarrow V_{a b}=V_{1}+V_{2}-V_{3}
$$

- To avoid violating KVL, a circuit cannot contain two different voltages V_{1} and V_{2} in parallel unless $V_{1}=V_{2}$.

Example 2.5

For the circuit in Fig.(a), find voltages v_{1} and v_{2}.

Solution:

- To find v_{1} and v_{2} we apply Ohm's law and Kirchhoff's voltage law.
- Assume that current i flows through the loop as shown in Fig.(b).
- From Ohm's law, $v_{1}=2 i, v_{2}=-3 i$
- Applying KVL around the loop gives

$$
\begin{equation*}
-20+v_{1}-v_{2}=0 \tag{2}
\end{equation*}
$$

- By Substituting Eq.(1) into Eq.(2)

$$
\begin{equation*}
-20+2 i+3 i=0 \Rightarrow i=4 \mathrm{~A} \tag{3}
\end{equation*}
$$

- By Substituting Eq.(3) into Eq.(1):

(b)

$$
v_{1}=8 \mathrm{~V}, \quad v_{2}=-12 \mathrm{~V}
$$

Example 2.6

Determine v_{0} and i in the circuit shown in Fig.(a).

(a)

(b)

Solution:

- We apply KVL around the loop as shown in Fig. (b).

$$
\begin{equation*}
-12+4 i+2 v_{o}-4+6 i=0 \tag{1}
\end{equation*}
$$

- Applying Ohm's law to the $6-\Omega$ resistor gives:

$$
\begin{equation*}
v_{o}=-6 i \tag{2}
\end{equation*}
$$

- Substituting Eq. (2) into Eq. (1): $-16+10 i-12 i=0 \Rightarrow i=-8 \mathrm{~A}$
- Then,

$$
v_{o}=-6 \times(-8)=48 \mathrm{~V}
$$

Example 2.7

Find current i_{0} and voltage v_{0} in the circuit shown in Fig.

Solution:

- Applying KCL to node a, we obtain $3+0,5 i_{o}=i_{o} \Rightarrow i_{o}=6 \mathrm{~A}$
- For the $4-\Omega$ resistor, Ohm's law giyes $v_{o}=4 i_{o}=24 \mathrm{~V}$

Example 2.8

Find currents and voltages in the circuit shown in Fig.(a).

Solution:

- By Ohm's law,

$$
\begin{equation*}
v_{1}=8 i_{1}, \quad v_{2}=3 i_{2}, \quad v_{3}=6 i_{3} \tag{1}
\end{equation*}
$$

(a)

- At node a, KCL gives $i_{1}-i_{2}-i_{3}=0$
- Applying KVL to loop 1 as in Fig. (b),

$$
\begin{equation*}
-30+v_{1}+v_{2}=0 \tag{3}
\end{equation*}
$$

- Substituting from Eq. (1) into Eq. (3):

$$
\begin{equation*}
-30+8 i_{1}+3 i_{2}=0 \Rightarrow i_{1}=\frac{30-3 i_{2}}{8} \tag{4}
\end{equation*}
$$

- Substituting Eqs. (4) and (5) into (2) gives
- Then,

$$
\begin{equation*}
\frac{30-3 i_{2}}{8}-i_{2}-\frac{i_{2}}{2}=0 \Rightarrow i_{2}=2 \mathrm{~A} \tag{5}
\end{equation*}
$$

$$
i_{1}=3 \mathrm{~A}, i_{3}=1 \mathrm{~A}, v_{1}=24 \mathrm{~V}, v_{2}=6 \mathrm{~V}, v_{3}=6 \mathrm{~V}
$$

2.4 Series Resistors and Voltage Division

- Series: two or more elements are in series if they are cascaded or connected sequentially and consequently carry the same current.
- The equivalent resistance of any number of resistors connected in a series is the sum of the individual resistances.

$$
R_{e q}=R_{1}+R_{2}+\cdots+R_{N}=\sum_{n=1}^{N} R_{n}
$$

- The voltage divider rule (VDR) can be expressed as

$$
v_{n}=\frac{R_{n}}{R_{1}+R_{2}+\cdots+R_{N}} v
$$

- Applying VDR to given circuit gives

$$
v_{1}=\frac{R_{1}}{R_{1}+R_{2}} v ; \quad v_{2}=\frac{R_{2}}{R_{1}+R_{2}} v
$$

2.5 Parallel Resistors and Current Division

- Parallel: Two or more elements are in parallel if they are connected to the same two nodes and consequently have the same voltage across them.
- The equivalent resistance of a circuit with N resistors in parallel is:

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{N}}
$$

Node a

- For given circuit: $\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \Rightarrow R_{\text {eq }}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$
- The total current i is shared by the resistors in inverse proportion to their resistances.

$$
i=i_{1}+i_{2}=\frac{v}{R_{1}}+\frac{v}{R_{2}}=v\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=v \frac{1}{R_{\mathrm{eq}}}
$$

- The equivalent conductance of resistors connected in paralle is the sum of their individual conductance.

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{N}} \Leftrightarrow G_{e q}=G_{1}+G_{2}+G_{3}+\cdots+G_{N}
$$

- Given the total current i entering node a in Fig., how do we obtain current i_{1} and i_{2} ?
- The current divider rule (CDR).

$$
\begin{aligned}
& v=i R_{e q}=i \frac{R_{1} R_{2}}{R_{1}+R_{2}} ; \quad i_{1}=\frac{v}{R_{1}} ; \quad i_{2}=\frac{v}{R_{2}} \\
& \Rightarrow i_{1}=\frac{R_{2}}{R_{1}+R_{2}} i \text { and } i_{2}=\frac{R_{1}}{R_{1}+R_{2}} i
\end{aligned}
$$

$$
i_{1}=\frac{G_{1}}{G_{1}+G_{2}} i, \quad i_{24}=\frac{G_{2}}{G_{1}+G_{2}} i \Rightarrow i_{n}=\frac{G_{n}}{G_{1}+G_{2}+\cdots+G_{N}} i
$$

Example 2.9

Find $R_{\text {eq }}$ for the circuit shown in Fig.

Solution:

$$
\begin{aligned}
& 6 \Omega \| 3 \Omega=\frac{6 \times 3}{6+3}=2 \Omega \\
& 1 \Omega+5 \Omega=6 \Omega \\
& 2 \Omega+2 \Omega=4 \Omega \\
& 4 \Omega \| 6 \Omega=\frac{4 \times 6}{4+6}=2.4 \Omega \\
& R_{\text {eq }}=4 \Omega+2.4 \Omega+8 \Omega=14.4 \Omega
\end{aligned}
$$

Example 2.10

Find the equivalent conductance $G_{\text {eq }}$ for the circuit in Fig.(a).
Solution:

- The $8-\mathrm{S}$ and $12-\mathrm{S}$ resistors are in parallel, so

$$
8 S+12 S=20 S
$$

- This $20-\mathrm{S}$ resistor is now in series with 5 S as shown in Fig. (b), so

$$
\frac{20 \times 5}{20+5}=4 \mathrm{~S}
$$

- This $4-\mathrm{S}$ is in parallel with the 6 S resistor.

(a)

Hence,

$$
G_{\text {eq }}=6+4=10 \mathrm{~S}
$$

Example 2.11

Find i_{0} and v_{o} in the circuit shown in Fig.(a). Calculate the power dissipated in the $3-\Omega$ resistor.
Solution:

$$
6 \Omega \| 3 \Omega=\frac{6 \times 3}{6+3}=2 \Omega
$$

Because the resistors $6-\Omega$ and $3-\Omega$ are in parallel, therefore they have the same voltage v_{0}.
So, we can obtain v_{o} in two ways.
One way is to apply Ohm's law to get:

$$
\begin{aligned}
& i=\frac{12}{4+2}=2 \mathrm{~A} \Rightarrow v_{o}=2 i=2 \times 2=4 \mathrm{~V} \\
& \text { and, } v_{o}=3 i_{o}=4 \Rightarrow i_{o}=\frac{4}{3} \mathrm{~A}
\end{aligned}
$$

(a)

(b)

Another way is to apply voltage division (VDR) and current division (CDR) to the circuit, then

$$
v_{o}=\frac{2}{2+4}(12 \mathrm{~V})=4 \mathrm{~V}, \quad i_{o}=\frac{6}{6+3} i=\frac{2}{3}(2 \mathrm{~A})=\frac{4}{3} \mathrm{~A}
$$

The power dissipated in the $3-\Omega$ resistor is $p_{o}=v_{o} i_{o}=4\left(\frac{4}{3}\right)=5.333 \mathrm{~W}$ 23-Sep-18

Example 2.12

For the circuit shown in Fig.(a), determine:
a) the voltage v_{o},
b) the power supplied by the current source,
c) the power absorbed by each resistor.

(a)

Solution:

The $6-\mathrm{k} \Omega$ and $12-\mathrm{k} \Omega$ in series $\rightarrow 6+12=18 \mathrm{k} \Omega$.
Thus \rightarrow Fig.(b). Now, apply the current division technique 30 mA to find i_{1} and i_{2}.
$i_{1}=\frac{18 \times 10^{3}}{(9+18) \times 10^{3}}(30 \mathrm{~mA})=20 \mathrm{~mA}, \quad i_{2}=\frac{9 \times 10^{3}}{(9+18) \times 10^{3}}(30 \mathrm{~mA})=10 \mathrm{~mA}$

Notice that the voltage across the $9-\mathrm{k} \Omega$ and $18-\mathrm{k} \Omega$ resistors is the same, and $v_{\mathbf{o}}=9,000 i_{1}=18,000 i_{2}=180 \mathrm{~V}$, as expected.
Power supplied by the source is $\quad p_{o}=v_{o} i_{o}=180 \mathrm{~V} \times 30 \mathrm{~mA}=5.4 \mathrm{~W}$
Power absorbed by the $12-\mathrm{k} \Omega$ resistor is

$$
p=i v=i_{2}\left(i_{2} R\right)=i_{2}^{2} R=\left(10 \times 10^{-3}\right)^{2}\left(12 \times 10^{3}\right)=1.2 \mathrm{~W}
$$

Power absorbed by the $6-\mathrm{k} \Omega$ resistor is Power absorbed by the $9-k \Omega$ resistor is

$$
p=i_{2}^{2} R=\left(10 \times 10^{-3}\right)^{2}\left(6 \times 10^{3}\right)=0.6 \mathrm{~W}
$$

$$
=3=i_{1} v_{o}=\frac{v_{o}}{R} v_{o}=\frac{v_{o}^{2}}{R}=\left(10 \times 10^{-3}\right)^{2}\left(6 \times 10^{3}\right)=3.6 \mathrm{~W}
$$

2.6 Wye-Delta Transformations

Delta to Wye (Star) Conversion $\Delta \rightarrow Y$

Wye (Star) to Delta Conversion $\mathrm{Y} \rightarrow \Delta$

$$
\begin{aligned}
& R_{1}=\frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}} \\
& R_{2}=\frac{R_{c} R_{a}}{R_{a}+R_{b}+R_{c}} \\
& R_{3}=\frac{R_{a} R_{b}}{R_{a}+R_{b}+R_{c}}
\end{aligned}
$$

$$
\begin{aligned}
& R_{a}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{1}} \\
& R_{b}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{2}} \\
& R_{c}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{3}}
\end{aligned}
$$

The Y and Δ networks are said to be balanced when

$$
\begin{aligned}
& R_{1}=R_{2}=R_{3}=R_{\mathrm{Y}}, \quad R_{a}=R_{b}=R_{c}=R_{\Delta} \\
& R_{\mathrm{Y}}=\frac{R_{\Delta}}{3} \quad \text { or } \quad R_{\Delta}=3 R_{\mathrm{Y}}
\end{aligned}
$$

Example 2.13

Convert the Δ network in Fig. (a) to an equivalent Y network.

(a)

(b)

Solution:

$$
\begin{aligned}
& R_{1}=\frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}}=\frac{10 \times 25}{15+10+25}=5 \Omega \\
& R_{2}=\frac{R_{c} R_{a}}{R_{a}+R_{b}+R_{c}}=\frac{25 \times 15}{15+10+25}=7.5 \Omega \\
& R_{3}=\frac{R_{a} R_{b}}{R_{a}+R_{b}+R^{2}}=\frac{15 \times 10}{15+10+25}=3 \Omega
\end{aligned}
$$

The equivalent Y network is shown in Fig.(b).

Example 2.14

Convert the Y network in Fig. to an equivalent Δ network.

Solution:

$$
\begin{aligned}
& R_{a}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{1}}=\frac{30 \times 20+30 \times 50+20 \times 50}{30}=103.3 \Omega \\
& R_{b}=\frac{R_{1} R_{2}+R_{2} R_{3}+\hat{R}_{3} R_{1}}{R_{2}}=\frac{30 \times 20+30 \times 50+20 \times 50}{20}=155 \Omega \\
& R_{c}=\frac{R_{1} R_{2}+R_{2} R_{3}+R_{3} R_{1}}{R_{3}}=\frac{30 \times 20+30 \times 50+20 \times 50}{50}=62 \Omega
\end{aligned}
$$

The emdl off chapter 2

